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Landslide tsunamis propagating around
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An analytical forced two-horizontal-dimension model is derived to investigate
landslide tsunamis propagating around a conical island lying on a flat continental
platform. Separation of variables and Laplace transform are used to obtain the
free-surface elevation in the whole domain and the runup at the shoreline in
terms of confluent Heun functions. The main properties of these functions and
their asymptotic behaviour for large parameters are investigated. Expression of the
transient leading wave travelling offshore is also derived. The distinguishing physical
features of landslide tsunamis propagating in a round geometry are then pointed out
and compared with those of landslide tsunamis propagating along a straight coast.
Analytical results satisfactorily agree with available experimental data.

1. Introduction
The occurrence of some destructive events, such as the landslide tsunami of

the Stromboli island (2002, Italy, South Mediterranean Sea) has recently renewed
the interest in studying tsunamis propagating around islands (see Tinti et al. 2005).
In the literature, the first known event of coastal inundation by tsunamis is dated
back to 1620 BC, referring to the eruption of the Thera volcano in the eastern
Mediterranean (see Bruins et al. 2008). Several similar tsunamis occurred through
the centuries, like the devastating Krakatau island tsunami of 1883 (see Bruins
et al. 2008) or the more recent Hokkaido island tsunami of 1993 (see Liu et al.
1995). Among these, the 1992 Flores island tsunami is of great interest, mostly
because of the unexpectedly large runup reached in the lee side of the Babi island
(Yeh et al. 1994; Bardet et al. 2003). Such recurring events led several authors
to investigate on the scattering of incident long waves by circular islands (see
Lautenbacher 1970; Smith & Sprinks 1975; Zhang & Zhu 1994; Fujima et al. 1995;
Kanoglu & Synolakis 1998; Mei, Stiassnie & Yue 2005; Synolakis et al. 2008).
Lautenbacher (1970) analysed the refractive influence of the bottom topography
on tsunami runup around a conical island. He did not solve analytically the
long-wave equation of motion, but transformed it into an integral form, which he
eventually solved numerically. With this methodology, Lautenbacher (1970) showed
that island runup can exceed runup of monodimensional plane beaches if the
tsunami wavelength λ is comparable to the island diameter L, i.e. λ/L � 1. Later on,
Zhang & Zhu (1994) studied the propagation of water waves over variable depths in
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a circular geometry and found a so-called ‘new’ solution to the problem. They
presented a transformation of the original equation and then provided a power series
solution. Nevertheless, the governing equation of motion studied by Zhang & Zhu
(1994) is known as a confluent form of the Heun’s equation and had already been
investigated long time ago (see Heun 1899). Then Fujima et al. (1995) described the
characteristics of long-wave trapping around a conical island. They also solved the
governing equation via the Frobenius power series expansion, but using a different
and more complex transformation than that employed by Zhang & Zhu (1994).
Finally Kanoglu & Synolakis (1998) developed an original analytical solution for
long-wave runup around a conical island. Knowing the existing solution of the linear
shallow-water wave equation for a cylinder over a flat bottom, Kanoglu & Synolakis
(1998) were able to construct a conical island from sills. Then solved the long-wave
equation for each of the sills separately, in terms of Bessel functions. Finally, they
obtained the complete solution by matching the free-surface elevation and the fluxes
at the geometrical discontinuities of the piecewise island. The methodology produced
good comparison with laboratory data of Liu et al. (1995) in terms of time histories
of free-surface elevation and maximum runup distribution around the island. Again,
neither Fujima et al. (1995) nor Kanoglu & Synolakis (1998) recognized the governing
equation to be a confluent form of the Heun equation (Heun 1899). However, note
that Zhang & Zhu (1994), Fujima et al. (1995) and Kanoglu & Synolakis (1998)
started their investigations before Slavyanov (1995) had formally developed and tuned
the theory of confluent Heun equations (CHEs). Several analytical studies of landslide
generated tsunamis along a plane beach are also available in the literature, from
the seminal work of Tuck & Hwang (1972), who first analysed and solved the one-
dimensional forced long-wave equation, to the new one-dimensional model introduced
by Liu, Lynett & Synolakis (2003) and the two-horizontal-dimension model of
Sammarco & Renzi (2008).

On the other hand, the analysis of tsunamis directly generated on the coast of
a round island and propagating around and from it has not been fully developed.
Tinti & Vannini (1995) worked out an analytical model of long waves propagating
around a circular island lying over a flat bottom and enclosed in a large but finite
ocean basin. The perturbation was induced by a bottom displacement occurring
in the proximities of the island itself. A null free-surface elevation condition was
imposed at the basin boundary, i.e. they assumed that the perturbation should
decay at a finite distance from the island. As a consequence of this somewhat
arbitrary assumption, Tinti & Vannini (1995) observed the occurrence of a local
system of rotating edge waves, persisting long time after their generation. Indeed
their results differ from those found earlier by Longuet-Higgins (1967), Meyer (1971)
and Summerfield (1971): long waves propagating about a round island cannot be
perfectly trapped. To show this fundamental result, simply consider the long-wave
equation

g∇ · (h∇ζ ) =
∂2ζ

∂t2
, (1.1)

where g is the acceleration due to gravity, ∇ the nabla operator in polar coordinates
(r, θ), t time, ζ the free-surface elevation and h = h(r) the water depth, to be
specified further on. Now assume the free-surface elevation to be of the form
ζ (r, θ, t) = η(r)ei(nθ−ωt), being i the imaginary unit and n ∈ �; ω > 0 is a given
wave frequency. Under these assumptions the long-wave equation (1.1) can be written
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in the Sturm-Liouville form

∂

∂r

(
hr

∂η

∂r

)
+ q(r)rη = 0, (1.2)

with

q(r) =
ω2

g
− n2h

r2
. (1.3)

The behaviour of the radial part η of the free-surface elevation is determined by the
sign of the polynomial q(r), expression (1.3). Hence η(r) will be oscillatory (q > 0) or
exponentially decreasing (q < 0) following (see Mei et al. 2005):

ω 2

gn2
�

h

r2
,

oscillatory
exponential

. (1.4)

Now, assuming the water depth at infinity to be finite yields q(r) � ω 2/g > 0 for
large r . All the radial solutions η(r) to the governing equation (1.2) are oscillatory at
large distances from the origin, even for small ω (see Longuet-Higgins 1967; Meyer
1971; Mei et al. 2005). Hence perfect trapping is not possible in a polar-symmetric
topography where h/r2 → 0 as r → ∞. As an application of the general theory
exposed above, Summerfield (1971) studied the free-surface oscillations around a
circular vertical island of radius r = a1 with a vertical edge at r = a2 > a1, lying on
a continental shelf. Assuming again the free-surface elevation to be of the form
ζ (r, θ, t) = η(r)ei(nθ−ωt), he solved the long-wave equation (1.1) separately for the two
domains r < a2 and r > a2 respectively, in terms of Hankel functions. Then, by
matching the two solutions at the common boundary r = a2, he found the existence
of a discrete set of complex eigenfrequencies ωnm = ξnm − iεnm , m ∈ �, for each
of the nth angular modes. These eigenfrequencies are characterized by a negative
imaginary part, whose absolute value εnm physically represents the rate of energy
loss in time (damping factor). Modes with very small damping factor εnm (for which
energy leakage in time is small) were classified qualitatively as ‘almost trapped’ on the
shelf; their amplitude was shown to attenuate exponentially while moving towards
the ocean. On the other hand, modes with large εnm were defined ‘leaky’, with a
profile of a propagating wave to infinity. Regardless of the amount of damping, all
the free modes propagate some amount of energy towards infinity. Hence, we infer
that the free modes cannot be directly excited by local transient sources such as a
landslide, which generates local perturbations not in the form of radiating waves to
infinity. Indeed, the free modes of an island-shelf system could resonate only if excited
by incoming wave trains (or travelling plane impulses, see Summerfield 1971). This
observation has a counterpart with that of Meyer (1971), who noted that edge-wave
modes on a sloping beach, due to their exponential decay in the offshore direction,
can be excited only by local disturbances and not by waves incident from infinity
(unless a nonlinear mechanism of subharmonic resonance is invoked, Guza & Davis
1974). In conclusion, for landslide-generated tsunamis propagating around a conical
island, the free-surface elevation cannot be expressed neither as a system of rotating
edge waves, nor in terms of the free modes of oscillation of the island-shelf system.

In § 2, an analytical two-horizontal-dimension model of landslide tsunamis
propagating around a conical island-shelf system is presented, based on the forced
linear long-wave equation. The fluid domain is divided into a near field and a far
field according to the discontinuities of the bottom slope. Separation of variables
and the Laplace transform methods are employed to obtain the solutions of the
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Figure 1. The fluid domain in physical coordinates. Radial section (a) and plan view (b) of
the conical island, the continental platform and the landslide.

governing equations in terms of the free-surface elevation in each field. The two
solutions are then matched at the common boundary. An analytical representation
of the free-surface elevation is derived in each field, consisting in an integral form of
an analytic function (confluent Heun for the near field and Hankel for the far field),
multiplied by amplitude factors depending on the characteristics of the slide. In § 3,
results obtained are shown to agree with the theoretical observations made by Meyer
(1971) and summarized in Mei et al. (2005). The existence of a transient leading wave
propagating outwards in the far field and decaying as O(t−1/2) is also shown. In § 4 the
time series of the free-surface runup generated by a subaerial slide are satisfactorily
compared with the available experimental results of Di Risio et al. (2009b). At the
sampled points on the shoreline, the first incoming wave generated by the subaerial
landslide is an elevation wave, followed by a deep trough, while the highest runup is
reached by the second or third wave. This is due to the excitation of imperfect edge-
wave-like components of the wave motion generated by the landslide. Finally, further
investigation demonstrates that tsunamis propagating along a conical island generate
smaller runup than those propagating along a plane beach with similar landslide
characteristics. This is due to the energy leakage phenomenon always occurring with
waves propagating in a round geometry.

2. Wave field
Consider a conical island of bottom radius b′ lying on an indefinite horizontal

continental platform; the island flanks have a uniform slope s (see figure 1). Let
the primes denote physical dimensional quantities. In the cylindrical reference system
(r ′, θ, z′) the r ′-axis is directed radially, the z′-axis rises up from the undisturbed water
level and θ ∈ (−π, π) is the angular coordinate positive counter-clockwise. The origin
O ′ is at the intersection of the undisturbed water level and the island vertical axis.
Water is in the region r ′ > r ′

0, being r ′
0 the radius of the wet contour located in the
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upper part of the island. Assume that the landslide originates in a neighbourhood of
the origin O ′ and is symmetric with respect to θ .

2.1. The governing equations

In the whole fluid domain, consider the forced linear long-wave equation of motion
in polar coordinates (r ′, θ)

ζ ′
t ′t ′ − gh′

(
1

r ′ ζ ′
r ′ + ζ ′

r ′r ′ +
1

r ′2 ζ ′
θθ

)
− gh′

r ′ ζ
′
r ′ = f ′

t ′t ′, (2.1)

where ζ ′(r ′, θ, t ′) is the free-surface elevation and t ′ is the time. Subscripts denote
differentiation with respect to the relevant variable. In (2.1), h′(r ′) is the overall bottom
depth, in the absence of the landslide, measured with respect to the undisturbed water
surface z′ = 0. Hence h′ = s(r ′ − r ′

0) if r ′
0 < r ′ < b′; h′ = s(b′ − r ′

0) ≡ h′
b if r ′ > b′, with

h′
b the water head over the continental shelf. Finally, f ′(r ′, θ, t ′) is a time-dependent

perturbation of the sea floor, representing the landslide moving along the flanks of
the island (see figure 1). Now let σ and H be respectively the characteristic length
and maximum vertical thickness of the landslide; then the following non-dimensional
variables can be defined:⎧⎪⎨

⎪⎩
r

r0

b

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

r ′

r ′
0

b′

⎫⎪⎬
⎪⎭ /σ, t =

√
gs

σ
t ′,

{
ζ

f

}
=

{
ζ ′

f ′

}
/H, h =

h′

σs
. (2.2)

The long-wave equation (2.1) becomes

ζtt − h

(
1

r
ζr + ζrr +

1

r2
ζθθ

)
− hr ζr = ftt . (2.3)

Boundedness of the free-surface is required at every time in all the fluid domain:
|ζ (r, θ, t)| < ∞. Zero initial free-surface elevation ζ and velocity ζt are also prescribed:
ζ (r, θ, 0) = 0, ζt (r, θ, 0) = 0. To solve the equation of motion (2.3) we employ the
Laplace transform pair

ζ̂ (r, θ; ω) =

∫ ∞

0

ζ (r, θ, t) e−ωtdt, ζ (r, θ, t) =
1

2πi

∫ c+i∞

c−i∞
ζ̂ (r, θ; ω) eωtdω, (2.4)

where ω = c + id is the complex non-dimensional transform parameter; c > 0 is a real
constant, large enough so that the integrals in (2.4) exist. Transform of (2.3) gives

r2ζ̂ rr + r

(
1 + r

hr

h

)
ζ̂ r − ω2r2

h
ζ̂ + ζ̂ θθ = −r2

h
f̂tt , (2.5)

where

f̂tt =

∫ ∞

0

ftt (r, θ, t)e−ωtdt

is the Laplace transform of the forcing term ftt of the governing equation (2.3).
Referring to the whole fluid domain as sketched in figure 1, we shall define the near
field as the domain where r0 < r < b, and the far field the remaining indefinite
region r > b. The equation of motion (2.5) will be solved in each field separately,
starting from the near field and then moving to the far field. The two solutions will
be matched afterwards at the boundary r = b.
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2.2. Solution of transformed equation

2.2.1. The near field r0 < r < b

In the near field h = r − r0, then (2.5) becomes

r2ζ̂ rr + r

(
1 +

r

r − r0

)
ζ̂ r − ω2r2

r − r0

ζ̂ + ζ̂ θθ = − r2

r − r0

f̂tt , (2.6)

which is an inhomogeneous second order partial differential equation. To obtain its
solution, let us consider the associated homogeneous equation

r2ζ̂ rr + r

(
1 +

r

r − r0

)
ζ̂ r − ω2r2

r − r0

ζ̂ + ζ̂ θθ = 0. (2.7)

Separation of variables ζ̂ (r, θ; ω) = R(r; ω)Θ(θ) yields Θn(θ) = cos nθ, n = 0, 1, 2, . . .

for the angular part Θ , having required Θ to be a periodic function of period 2π and
to be symmetric with respect to θ = 0. Back to the homogeneous equation, separation
of variables yields the following ordinary differential equation for the radial function
R =Rn(r; ω):

Rn,rr +

(
1

r
+

1

r − r0

)
Rn,r +

[
(iω)2

r − r0

− n2

r2

]
Rn = 0, (2.8)

which is a CHE in its natural general form (see Slavyanov 1995), r being the
independent variable and (iω) a complex parameter. Solution of (2.8) can be found
by applying the Frobenius method of power series, as shown in § A.1, thus obtaining

Rn(r; iω) = αnHc(1)
n (r; iω) + βnHc(2)

n (r; iω) ,

αn and βn being the integration constants. Hc(1,2)
n are the confluent Heun functions of

order n of (first and second) kind (see § A.1) respectively:

Hc(1)
n (r; iω) =

∞∑
m=0

anm(iω)
(
1 − r0

r

)m

, (2.9)

and

Hc(2)
n (r; iω) = ln

(
1 − r0

r

)
Hc(1)

n (r; iω) +

∞∑
m=0

bnm(iω)
(
1 − r0

r

)m

, (2.10)

where parametric dependence on the radius r0 is omitted for brevity. The series
coefficients anm in (2.9) and bnm in (2.10) are given respectively by

anm(iω) =
1

m2

m∑
k=1

an,m−k

[
n2(k − 1) +

ω2r0

2

(
k + k2

)]

and

bnm(iω) =
1

m2

m∑
k=1

bn,m−k

[
n2(k − 1) +

ω2r0

2
(k + k2)

]
− 2

m
anm,

with m =1, 2, . . . , an0 = 1 and bn0 = 0. Since the confluent Heun function of the second
kind Hc(2)

n has a logarithmic singularity for r → r0 (see 2.10), boundedness of the
free-surface elevation at r = r0 is satisfied only if βn = 0. Hence

Rn(r; ω) = αnHc(1)
n (r; iω) . (2.11)
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Figure 2. Landslide specifications. σ and λ are the characteristic dimensions of the slide,
while θ0 = 1/γ is the characteristic angle subtended by the slide with respect to the origin of
the reference system.

The solution ζ̂ h of the homogeneous equation (2.7) associated to (2.6) is then

ζ̂ h(r, θ, t) =

∞∑
n=0

αnRn(r; ω)Θn(θ) =

∞∑
n=0

αnHc(1)
n (r; iω) cos nθ. (2.12)

The method of variation of parameters can now be employed to find the solution
ζ̂ (r, θ; ω) of the inhomogeneous equation of motion (2.6). We assume for ζ̂ the same
algebraic expression as ζ̂ h, i.e.

ζ̂ (r, θ; ω) =

∞∑
n=0

Gn(r; ω) cos nθ, (2.13)

with Gn unknown functions. By using the expansion (2.13) into the inhomogeneous
equation (2.6) and employing the orthogonality property∫ π

−π

cos mθ cos nθdθ =
2π

εn

δnm,

εn being the Jacobi function and δnm the Kronecker operator, an inhomogeneous
ordinary differential equation for Gn(r; ω) is obtained:

Gn,rr +

(
1

r
+

1

r − r0

)
Gn,r +

[
(iω)2

r − r0

− n2

r2

]
Gn = − 1

r − r0

Fn(r; ω), (2.14)

which is the CHE of complex parameter iω (2.8), forced by the function

Fn(r; ω) =
εn

2π

∫ π

−π

f̂tt (r, θ; ω) cos nθ dθ. (2.15)

For a translating Gaussian sea-floor movement with initial position of the landslide
centroid rs = r ′

s/σ , the time-dependent perturbation of the sea floor is

f (r, θ, t) = exp
{

− [r − rc(t)]
2 − (γ θ)2

}
, (2.16)

where γ = 1/θ0, θ0 is the characteristic angle subtended by the landslide and
rc(t) = rs + t the radial coordinate of the centroid, moving at the uniform speed
u = 1. With reference to figure 2, if λ is the characteristic width of the landslide, then
γ = 1/θ0 = r ′

s/2λ. The forcing term Fn, expression (2.15), can be integrated twice by
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Figure 3. Behaviour of the ratio �n/�1 with increasing modal order n. Parameters are
σ = 0.175 m, λ= σ/2, rs = 7.43, γ = 7.43, modelling the geometry of the conical island of § 4.1.

parts, yielding

Fn(r; ω) = �n

{
− [2(r − rs) + ω] e−(r−rs )

2

+ ω2

√
π

2
e−ω(r−rs )+ω2/4

[
1 + erf

(
r − rs − ω

2

)]}
, (2.17)

where

�n =
εne

−n2/4γ 2

4γ
√

π

[
erf

(
γ π +

in

2γ

)
+ c.c.

]
, (2.18)

c.c. being the complex conjugate. �n is a real amplitude factor dependent on the
landslide characteristic angle 1/γ ; figure 3 shows the fast decay of �n for increasing
modal order n. The solution of the forced ordinary differential equation (2.14), subject
to the boundary condition |Gn(r0; ω)| < ∞, is then

Gn(r; ω) = αnHc(1)
n (r; iω) − Pn(r; ω). (2.19)

In (2.19) Pn is the particular solution

Pn(r; ω) =

∫ r

r0

Fn(ρ; ω)

(ρ − r0) W (ρ)

[
Hc(1)

n (ρ; iω)Hc(2)
n (r; iω)

− Hc(2)
n (ρ; iω)Hc(1)

n (r; iω)
]
dρ. (2.20)

W (r) =
r0

r(r − r0)

is the Wronskian of the two homogeneous solutions Hc(1)
n (r; iω) and Hc(2)

n (r; iω) of
the CHE (2.8), as shown in § A.2. By substituting (2.19) into the series expansion
(2.13), the complete expression of the free-surface elevation transform in the near
field is obtained

ζ̂ (r, θ; ω) =

∞∑
n=0

[
αnHc(1)

n (r; iω) − Pn(r; ω)
]

cos nθ. (2.21)

The integration constants αn in the above expression are to be determined by applying
the matching conditions at the boundary r = b.
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2.2.2. The far field r > b

In the far field, the bottom depth is constant everywhere: h = hb = b − r0, and
the direct influence of the forcing term on the behaviour of the fluid is negligible:
f (r, θ, t) � 0. Then the governing equation (2.5) simplifies into

r2ζ̂ rr + rζ̂ r − ω2r2

hb

ζ̂ + ζ̂ θθ = 0.

Separation of variables ζ̂ (r, θ; ω) = R(r; ω)Θ(θ) yields the same angular solution as
in the near field, Θn = cos nθ , n= 0, 1, 2 . . . while for the radial part Rn

r2Rn,rr + rRn,r −
(

ω2r2

hb

+ n2

)
Rn = 0. (2.22)

With the change of variables x = kr , with k = ω/
√

hb, (2.22) becomes a standard
modified Bessel equation, whose independent solutions are the two modified Bessel
functions In(x) and Kn(x). The general solution of the governing equation (2.22)

Rn(r; ω) = αnIn

(
ωr√
hb

)
+ βnKn

(
ωr√
hb

)

has a branch-cut on the negative real axis of the complex plane ω introduced by Kn.
Note that, since ω = c + id has a positive real part c, arg(ωr/

√
hb) ∈ (−π/2, π/2).

Now, for | arg(x)| < π/2 the modified Bessel function of first kind In(x) � ex/
√

2πx as
|x| → ∞. Hence, boundedness of the free-surface elevation as r → ∞ requires αn =0
and

Rn(r; ω) = βnKn

(
ωr√
hb

)
. (2.23)

Finally, the free-surface elevation ζ̂ in the far field is

ζ̂ (r, θ; ω) =

∞∑
n=0

Rn (r, ω) Θn (θ) =

∞∑
n=0

βn Kn

(
ωr√
hb

)
cos nθ, r > b. (2.24)

The coefficients βn in the above expression can be obtained by matching (2.24) with
(2.21).

2.2.3. Matching

The near field solution (2.21) and the far field solution (2.24) are now matched at
the common boundary r = b. Continuity of the free-surface elevation ζ̂ and the radial
fluxes ζ̂ r yields respectively for each n= 0, 1, 2, . . . ,

αnHc(1)
n (b; iω) − Pn(b; ω) = βnKn

(
ωb√
hb

)
,

αnHc(1)
n,r (b; iω) − Pn,r (b; ω) = βnKn,r

(
ωb√
hb

)
.

The solution of the above inhomogeneous linear system is

αn(ω) =
1

r0

∫ b

r0

Fn(ρ; ω)ρ

[
Hc(1)

n (ρ; iω)
�(2)

n (ω)

�
(1)
n (ω)

− Hc(2)
n (ρ; iω)

]
dρ, (2.25)

βn(ω) =
1

b hb�
(1)
n (ω)

∫ b

r0

Fn(ρ; ω)ρ Hc(1)
n (ρ; iω) dρ, (2.26)
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where

�(1,2)
n (ω) = −Hc(1,2)

n (b; iω) Kn,r

(
ωb√
hb

)
+ Kn

(
ωb√
hb

)
Hc(1,2)

n,r (b; iω) . (2.27)

The free-surface elevation transform in the complex half-plane | arg(ω)| < π/2 is then

ζ̂ (r, θ; ω) =

∞∑
n=0

⎧⎪⎨
⎪⎩

αnHc(1)
n (r; iω) − Pn(r; ω)

βnKn

(
ωr√
hb

)
⎫⎪⎬
⎪⎭ cos nθ if

{
r0 < r < b

r > b

}
(2.28)

for the near field and the far field respectively, with αn and βn given by (2.25) and
(2.26) respectively.

3. Physical description
Inverse transform of (2.28) can be obtained by means of complex analysis. For the

sake of clarity we shall first consider the free-surface elevation in the far field r > b.

3.1. The far field

Inverse transform of (2.28) yields

ζ (r, θ, t) =
1

2πi

∞∑
n=0

∫ c+i∞

c−i∞
βn(ω)Kn

(
ωr√
hb

)
eωtdω cos nθ.

Upon substitution of (2.26) for βn, the latter expression becomes

ζ (r, θ, t) =

∞∑
n=0

1

2πibhb

∫ b

r0

ρ

∫ c+i∞

c−i∞
fn(ω)eωtdω dρ cos nθ, (3.1)

having defined

fn(ω) =
Fn(ρ; ω)Hc(1)

n (ρ; iω)Kn(ωr/
√

hb)

�
(1)
n (ω)

, (3.2)

where ρ ∈ (r0, b) and r ∈ (b, ∞) are regarded as parameters, the forcing function Fn

is given by (2.17) and the denominator �(1)
n by (2.27). Now, let us evaluate the inner

integral of expression (3.1).
For t < 0, contour integration in the complex plane and usage of the asymptotic

expressions of the confluent Heun functions (2.9) and (2.10) (see Appendix A.3) yield
simply ∫ c+i∞

c−i∞
fn(ω)eωtdω = 0,

as shown in Appendix B.1. As a consequence, ζ (r, θ, t) = 0 for t < 0.
For t > 0, contour integration in the complex plane gives∫ c+i∞

c−i∞
fn(ω)eωtdω = i

∫ +∞

−∞
fn(is)e

istds (3.3)

as shown by some lengthy algebra in Appendix B.1. Now, substituting the latter result
into (3.1), writing back the integrand in terms of βn by using (3.2) and (2.26), and
further transforming s = −ω, yield

ζ (r, θ, t) =

∞∑
n=0

cos nθ
1

2π

∫ ∞

−∞
βn(−iω)Kn

(
−iωr√

hb

)
e−iωtdω (3.4)
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Figure 4. Plots of |Cn| versus ω; 25 Gauss points are needed for (3.6) to converge.
Non-dimensional parameters are r0 = 11.83, rs = γ = 7.43 modelling the conical island of § 4.1.

for the free-surface elevation in the far field. Recalling that

Kn(x) =
π

2
in+1Hn(ix), −π < arg(x) � π/2,

where Hn is the Hankel function of first kind and order n, the free-surface elevation
(3.4) in the far field r > b assumes the form

ζ (r, θ, t) =

∞∑
n=0

cos nθ

∫ ∞

−∞
Cn(ω)Hn

(
ωr√
hb

)
e−iωtdω, (3.5)

having defined

Cn(ω) =
in+1

4
βn(−iω) =

1

4bhb

i n+1

�
(1)
n (−iω)

∫ b

r0

ρ Fn(ρ; −iω)Hc(1)
n (ρ; ω) dρ. (3.6)

Let us further introduce the symbol ()∗ to denote the complex conjugate of (). Then
from (3.6) it is straightforward to show that the integrand of (3.5) satisfies the property

Cn(−ω)Hn

(
−ωr√

hb

)
eiωt = C∗

n(ω)H ∗
n

(
ωr√
hb

)(
e−iωt

)∗
.

As a consequence, the free-surface elevation (3.5) becomes

ζ (r, θ, t) =

∞∑
n=0

cos nθ

∫ ∞

0

Cn(ω)Hn

(
ωr√
hb

)
e−iωtdω + c.c. , (3.7)

i.e. a real number. Integrals like (3.6) on the finite domain (r0, b) can be conveniently
evaluated via the Gauss–Legendre quadrature method (see Press et al. 1986, for
details). Numerical evaluation of (3.6) shows that the |Cn(ω)| fast decay with increasing
ω, as depicted in figure 4; as a result the convergence of the integral (3.7) is assured.
Now define k = ω/

√
hb the wavenumber in the far field. Then note that each spectral

component of the free-surface elevation (3.7) is proportional to Hn(kr)e−iωt , i.e.
outgoing in the far field. This result agrees with the general theory of Longuet-
Higgins (1967), Meyer (1971) and Summerfield (1971) already discussed in § 1. Note
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also that ζ (r, θ, t) (3.7) is obtained by integrating the frequency response Hn(kr) to
an incident wavetrain of unit amplitude, multiplied by the forcing factor Cn(ω). This
solution is similar to many other linear-system responses to transient excitations, like
for example the harbour response to a transient incident wave (see Mei et al. 2005).

3.2. The leading wave

As anticipated in § 1, the transient landslide-generated disturbance propagating around
the island is not perfectly trapped. In this section we investigate on the existence of a
leading wave propagating radially at large distances from the coastline, r � 1. Let us
consider the free-surface elevation (3.7); to obtain an approximate expression of ζ at
large distances from the island, use the asymptotic expansion of the Hankel function
for large argument

Hn(x) �
√

2

πx
ei(x−πn/2−π/4),

so that

ζ (r, θ, t) �
∞∑

n=0

cos nθ e−i( πn
2 + π

4 )
∫ ∞

0

Cn(ω)

√
2
√

hb

πωr
eiω(r/

√
hb−t) dω + c.c.. (3.8)

Since the wavefront moves at the group celerity Cg = dω/dk =
√

hb, its position at a
given time is described by r =

√
hbt . Substitution of the latter relation inside (3.8),

yields the expression of the leading wave ζl(θ, t)

ζl (θ, t) �
√

2

πt

∞∑
n=0

An cos nθ, (3.9)

where the real values

An = e−i( πn
2 + π

4 )
∫ ∞

0

Cn(ω)√
ω

dω + c.c. (3.10)

are modal amplitudes. The latter integral on the infinite domain (0, ∞) can be
evaluated by employing the more advanced Gauss–Kronrod iterative method. Note
that the leading wave (3.9) decays as O(t−1/2) in the three-dimensional geometry of
the shelf, i.e. it vanishes faster than the leading Airy wave, O(t−1/3), generated by a
transient disturbance in a two-dimensional ocean of constant depth (see Mei et al.
2005).

Let us now investigate on the influence of the distinctive parameters of the system,
b′ (bottom radius) and σ (characteristic length of the slide), upon the characteristics
of the leading wave travelling offshore. The amplitude An of the nth leading wave
component (3.10) depends on Cn (3.6), which in turn is a function of the ratio b = b′/σ .
As shown in figure 5, the An fast decay as b increases. Physically, the submerged
beach surrounding the island acts as a barrier to trap wave energy: the longer the
beach with respect to the slide, the less the energy propagated offshore. We now turn
to the analysis of the near field and the free-surface runup.

3.3. The near field

In the near field r < b inverse transform of (2.28) yields

ζ (r, θ, t) =
1

2πi

∞∑
n=0

∫ c+i∞

c−i∞

[
αn(ω)Hc(1)

n (r/r0; iω) − Pn(r; ω)
]
eωtdω cos nθ.
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Figure 5. Plots of An versus b = b′/σ , evaluated with the Gauss–Kronrod quadrature method.
Non-dimensional parameters are r0 = 11.83, rs = γ =7.43, modelling the conical island of § 4.1.
Note that the An fast decay by increasing b.

By using (2.25) for αn and (2.20) for the particular solution Pn, the free-surface
elevation can be expressed as

ζ (r, θ, t) =
1

2πir0

∞∑
n=0

cos nθ

[∫ b

r0

ρ

∫ c+i∞

c−i∞
f1n(ρ, ω)eωtdω dρ

−
∫ r

r0

ρ

∫ c+i∞

c−i∞
f2n(ρ, ω)eωtdω dρ

]
. (3.11)

In (3.11) the two integrand functions are

f1n(ρ, ω) = Fn(ρ; ω)

[
Hc(1)

n (ρ; iω)
�(2)

n (ω)

�
(1)
n (ω)

− Hc(2)
n (ρ; iω)

]
Hc(1)

n (r; iω) (3.12)

and

f2n(ρ, ω) = Fn(ρ; ω)
[
Hc(1)

n (ρ; iω)Hc(2)
n (r; iω) − Hc(2)

n (ρ; iω)Hc(1)
n (r; iω)

]
(3.13)

respectively. In the latter expressions, Fn is the forcing function (2.17), while �(1,2)
n are

given by (2.27). In order to solve (3.11), consider the contour integrals∫ c+i∞

c−i∞
fjn(ρ, ω)dω, j = 1, 2 (3.14)

and employ again the technique used to get the inverse transform of ζ in the far field.
For t < 0, as shown in Appendix B.2, it is straightforward to show∫ c+i∞

c−i∞
fjn(ρ, ω)dω = 0, j = 1, 2

implying ζ (r, θ, t) = 0.
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Figure 6. Plots of |An| (a) and |Bn| (b) versus ω at r = 15. Non-dimensional parameters are
r0 = 11.83, rs = γ = 7.43, modelling the conical island of § 4.1.

For t > 0 contour integration in the complex plane yields∫ c+i∞

c−i∞
fjne

ωtdω = i

∫ +∞

−∞
fjn(is)e

istds, j = 1, 2, (3.15)

as shown in Appendix B.2. Substituting (3.15) back into (3.11) and further
transforming s = −ω, we obtain

ζ (r, θ, t) =
1

2πr0

∞∑
n=0

cos nθ

[∫ b

r0

ρ

∫ ∞

−∞
f1n(ρ, −iω)e−iωtdω dρ

−
∫ r

r0

ρ

∫ ∞

−∞
f2n(ρ, −iω)e−iωtdω dρ

]
. (3.16)

By making use of both definitions (3.12) and (3.13) for the fjn , the free-surface
elevation in the near field (3.11) can be finally expressed as

ζ (r, θ, t) =

∞∑
n=0

cos nθ

∫ +∞

0

[
An(r; ω)Hc(1)

n (r; ω) + Bn(r; ω)Hc(2)
n (r; ω)

]
e−iωtdω + c.c.,

(3.17)

where

An(r; ω) =
1

2πr0

∫ b

r0

ρ Fn(ρ; −iω)

[
Hc(1)

n (ρ; ω)
�(2)

n (−iω)

�
(1)
n (−iω)

− Hc(2)
n (ρ; ω)

]

+
1

2πr0

∫ r

r0

ρ Fn(ρ; −iω)Hc(2)
n (ρ; ω)dρ (3.18)

and

Bn(r; ω) = − 1

2πr0

∫ r

r0

ρ Fn(ρ; −iω)Hc(1)
n (ρ; ω)dρ, (3.19)

being An(r; −ω) = A∗
n(r; ω) and Bn(r; −ω) = B∗

n(r; ω). As shown in figure 6, the terms
|An| and |Bn| are fast-decaying oscillating functions of ω, so that the integral in
(3.17) is convergent. Finally, note that in the limit r → b, the expressions of the
free-surface elevation respectively in the near field (3.17) and in the far field (3.7)
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coincide. The solution (3.17) in the near field is a transient propagating wave. It is
obtained by summing over the positive real frequency spectrum the two independent
solutions Hc(1)

n and Hc(2)
n of the governing equation (2.8), multiplied by the forcing

factors An and Bn respectively. The free-surface elevation in the far field (3.7) and
in the near field (3.17) can be evaluated by solving numerically the relevant integral
expressions over the infinite domain ω ∈ (0, ∞); fast-converging method such as the
Gauss–Kronrod quadrature can be employed with reliable accuracy.

3.4. The free-surface runup

The runup at the shoreline is a variable of interest for risk assessment purposes.
Substitution of r = r0 into the free-surface elevation ζ , expression (3.17), determines
the second integral in (3.18) and the Bns to be null. The corresponding value of the
free-surface runup is therefore

ζ (r0, θ, t) =

∞∑
n=0

cos nθ

∫ +∞

0

An (r0, ω) e−iωtdω + c.c., (3.20)

where

An (r0, ω) =
1

2πr0

∫ b

r0

ρFn(ρ, −iω)

[
Hc(1)

n (ρ; ω)
�(2)

n (−iω)

�
(1)
n (−iω)

− Hc(2)
n (ρ; ω)

]
dρ. (3.21)

In (3.21) �(1,2)
n are still given by (2.27), while Fn is again the forcing function

defined by (2.17). In § 4, parametric discussion of the free-surface runup is made; the
physical observations on the free-surface runup, heights and periods made by Di Risio
et al. (2009b) are compared with numerical integration of expression (3.20). Finally,
discussion is made on the mean features of the solution, pointing out the differences
between tsunamis propagating around a conical island and tsunamis propagating
along a plane beach.

4. Discussion
4.1. Experimental comparison

In order to validate the theory, comparison is made with the experimental results
of Di Risio et al. (2009b). The dimensions of the basin, the island and the landslide
used in the experiments, are indicated in table 1. The initial position of the landslide
centroid, r ′

s = 1.3 m, is such that the mass at the starting position rests completely out
of the water, thus representing a subaerial slide. The mass, reproducing half of an
ellipsoid, is a rigid block with flat bottom, sliding along a plane slope 0.5 m wide, as
shown in figure 7. The resulting geometry is that of a plane slope connected to the
curved flanks of a conical island, i.e. slightly different from the conical island of the
analytical model. Note also that the landslide used in the experiments preserves its
shape during all the phases of motion. On the other hand, the landslide described
analytically by (2.16) modifies its shape adapting to the curvature of the island while
sliding along its flanks. As a result, the theoretical volume of the slide

V ′(t) = σ 2H

∫ π

−π

∫ ∞

0

f (r, θ, t) r dr dθ

=

√
π

2

σ 2Herf(γ π)

γ

{
e−(rs−t)2 +

√
π [erf (rs + t) + 1] (rs + t)

}
(4.1)
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Basin

Length (m) Width (m) Depth (m)

50.00 30.00 3.00

Island

Wet contour Bottom radius Flank slope
r ′
0 (m) b′ (m) s

2.07 4.45 1/3

Landslide

Length (m) Width (m) Max vert. height H (m) Initial position r ′
s (m)

0.80 0.40 0.045 1.3

Table 1. Basin, island and landslide dimensions of the laboratory experiment made by
Di Risio et al. (2009b).

Figure 7. View of the experimental device used by Di Risio et al. (2009b). The landslide is
forced to move along a plane incline 0.5 m wide; as a result the geometry of the experimental
model is that of a very thin plane-beach strip connected to the curved flanks of a conical
island.

depends on time, increasing linearly for large t . This curvature-induced increase of
volume, even if physically reasonable, is absent in the experimental model, therefore
the equivalence in volume of the analytical and the experimental slides cannot
be strictly applied. However mean quantities can still be represented. We choose
the characteristic parameters σ = 0.175 m and λ= σ/2 to match respectively the wave
period time scale in the experiments T ′(∝

√
σ/gs) � 2 s and the shape of the landslide,

whose characteristic width to length ratio is λ : σ = 1 : 2. With this choice, the volume
of the theoretical landslide at the beginning of motion is V ′(0) = 0.0045 m3 and then
increases linearly, equating the volume of the experimental slide V ′

exp =0.0084 m3 at
about t ′ � 1.6 s, as shown in figure 8. At larger times V ′ >V ′

exp and still increasing,
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Figure 8. Volume of the analytical landslide (bold dashed line) evaluated with (4.1) and of
the experimental landslide (continuous line) versus time. The first one increases almost linearly
with time while the landslide moves along the flanks of the island; the second one is constant
during all the phases of motion.

Island bottom radius

Island wet
contour

7R
5R

4R

2R

2.07

8.90

4.45

Incline

Figure 9. Sketch of half of the conical island with the positions of the sample points
considered for experimental comparison and indication of the island dimensions (in metres).
The solid line (–) represents the island wet contour r ′

0, while the island bottom radius b′ is
indicated by the dashed line (– –). The bold arrow indicates the direction of motion of the
sliding mass. Segments on the island flanks indicate the position of the gauges employed in
the experiments of Di Risio et al. (2009b).

but the slide approaches deeper water and its influence on the generated wave field
can be neglected.

The sample points along the shoreline 2R(20.6◦), 4R(47.6◦), 5R(60.2◦) and 7R(86.3◦)
(‘R’ stands for runup) of Di Risio et al. (2009b), sketched in figure 9, have been chosen
for comparison. In figure 10(a–d ), the time series of the free-surface runup, expression
(3.20), are plotted in physical variables at the chosen sample points (see figure 9) and
compared to the experimental time series of Di Risio et al. (2009b). Figure 10(a)
shows the time series of the free-surface runup at θ =20.6◦ (gauge 2R), i.e. about
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Figure 10. Analytical (bold line) and experimental (bold dashed line) time series of the
free-surface runup Rup = ζ ′(r ′

0, θ, t ′) at the shoreline in physical variables. The geometry of the
island and the landslide is reported in table 1. The Gauss–Kronrod quadrature method has
been used for numerical integration of (3.20), modes n= 0 . . . 10 have been taken into account.
Subplot (a) refers to the shoreline point 2R located at θ =20.6◦, subplot (b) refers to 4R
located at θ =47.6◦, subplot (c) to 5R located at θ = 60.2◦ and subplot (d ) to 7R located at
θ = 86.3◦. In each of the subplots, a plant view of the island is sketched on the top left corner.
Here, the solid line (–) represents the island wet contour, while the dashed line (– –) represents
the island bottom radius. The arrow indicates where the slide enters the water and the filled
circle specifies the position of the relevant runup gauge.

0.72 m (�4σ ) from the point of tsunami generation. In figure 10(b) is instead depicted
the time series of the free-surface runup at θ = 47.6◦ (gauge 4R), i.e. about 1.24 m
(�7σ ) far from the origin. Figure 10(c) shows the runup time series at θ = 60.2◦

(gauge 5R), i.e. about 2.17 m (�12σ ) far from the origin and finally in figure 10(d )
is depicted the runup time series at θ =86.3◦ (gauge 7R), i.e. about 3.12 m (�18σ )
from the point of tsunami generation. Overall, the graphs show good correspondence
between the analytical results and the experimental ones. The main properties of the
generated wave field, i.e. the shape of the waves, the time of arrival of crests and
troughs and the maximum runup and drawdown, are predicted satisfactorily by the
analytical model. Other than the difference in landslide volumes pointed up above,
several minor factors can also explain the slight differences between the analytical
and the experimental data. Firstly, recall that the geometry of the experimental model
is a narrow plane beach surrounded by a conical island. The presence of this thin-
strip plane beach influences the overall behaviour of the fluid in the neighbourhood
of the generation zone. Due to the energy-trapping property of the straight coast,
the maximum runup obtained in the experiment is larger than the one obtained
with the analytical model for a purely conical island (which is unable to trap energy
completely) especially near the generation zone (see point 2R in figure 10a). Secondly,
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Figure 11. Spatial snapshots of the free-surface elevation in non-dimensional variables for a
subaerial landslide at the shoreline. θ in degrees. The dimensions of the island are those of
table 1, the slide characteristic length is σ = 0.37 m, λ= σ/2. The centroid initial position is
rs =3.51 (r ′

s =1.3 m). Bold lines depict the landslide surface contour f (r0, θ, t) at the given
times, solid lines represent the free-surface elevation ζ (r0, θ, t). Subplot (a) refers to t = 2.97
(t ′ = 1 s), subplot (b) refers to t = 3.57 (t ′ = 1.2 s), subplot (c) to t =5.94 (t ′ = 2 s) and finally
subplot (d ) refers to t = 8.92 (t ′ = 3 s). Modes n= 0–9 have been considered. Note that the
symmetry condition ∂ζ/∂θ = 0 at θ = 0 is fully reproduced by the model.

note that the long-wave governing equation (1.1) used in the model is non-dispersive,
hence the dispersive behaviour of water waves on a bottom with varying depth cannot
be properly rendered with the analytical model used here. As a result, while in the
experimental time series the period of the first incoming waves is longer than that
of the following group, in the analytical model the wave period is almost constant
for all the waves in the group (see figure 10b,c). Finally, note that the landslide used
in the experiments is not of a double Gaussian shape, but is an half an ellipsoid.
The difference in the front shape, which in the model is much smoother than in the
experiments, could have led to some diversities in the shape of the first propagating
waves.

4.2. Tsunami generation and propagation around the island

After having shown a good agreement between the theoretical and the experimental
data, we analyse the tsunami generation and propagation mechanisms more in detail.
In figure 11(a–d) snapshots of the non-dimensional free-surface runup ζ (r0, θ, t) at
four different times are shown, together with the contour of the slide f (r0, θ, t).
The geometry of the island is still that of table 1. The landslide is kept subaerial
(r ′

s = 1.3 m), but its characteristic length is increased to σ = 0.37 m (rs = r ′
s/σ = 3.51),

still being λ= σ/2. The larger ratio σ/b′ allows to gain a clearer insight on the early
interaction between the slide and the water occurring during the generation process.
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At the first instants of motion (figure 11a, b) the shoreline recedes as the landslide
pushes water away. The early depression wave formed landwards of the slide is clearly
a source-related perturbation, having the same width as that of the slide (Lynett &
Liu 2005, found numerically a similar result for landslide tsunamis along a plane
beach). Moving ahead in time, the slide disappears in deeper water (figure 11c,d). At
the origin the shoreline inverts its motion and goes back up the incline (figure 11c),
due to the elastic rebound. The perturbation leaves the origin with the profile of a
positive N-wave along the coastline, as shown in figure 11(c). Finally, water inundates
the dry land at the origin (figure 11d), meanwhile the leading elevation wave is
travelling around the island, followed by a deeper trough. Note that the generation
mechanisms of landslide tsunamis around a conical island do not differ from those of
landslide tsunamis along a plane beach (see Lynett & Liu 2005; Sammarco & Renzi
2008). In fact, the shoreline snapshots of figure 11(a–d) resemble very closely the
digital pictures of the shoreline position taken by Di Risio et al. (2009a) during the
experimental modelling of landslide tsunamis along a plane beach. At larger times,
however, the smaller refractive power of the island enhances the amount of energy
radiated to infinity. As a result, the wave field propagating around the island differs
from the one propagating along the plane beach, as shown in the following section.

4.3. The conical island versus the plane beach

In this section, the features of tsunamis propagating around a conical island are
further compared to the features of landslide-generated tsunamis on a plane beach
(see Sammarco & Renzi 2008). To perform this comparison, beach slope and landslide
characteristic parameters are kept equal, i.e. s = 1/3, σ = 0.37 m, λ= σ/2 in both
geometries; landslide is half-submerged in its initial position in both cases. The island
geometry is the same of table 1, the half-submergence condition requires the landslide
centroid position at r ′

s = r ′
0 = 2.07 m. Figures 12(a) and 12(b) show the time series of

the free-surface runup (expression 3.20) in non-dimensional variables at the shoreline
points 1S =(r0, 20.6◦) and 2S = (r0, 60.2◦) respectively, while figures 12(c) and 12(d )
show the free-surface elevation time series in the far field (expression 3.7) at the
offshore points 1O =(b, 0◦) and 2O =(2b, 0◦) respectively. As the landslide motion
begins, water is pushed ahead and a leading elevation wave travelling offshore is
generated, quickly reaching the two points 1O at r = b (figure 12c) and 2O at r = 2b

(figure 12d ) in the far field. Note also the strong attenuation experienced by the
leading wave crest while travelling from point 1O to point 2O . In the meantime,
a deep depression wave occurs just behind the slide. As a result, at point 1S on
the shoreline close to the origin the first incoming wave has a trough, followed
by a large crest generated by the elastic rebound (see figure 12a). The maximum
runup is reached by the first crest, then oscillations decay in time, the free-surface
elevation eventually reaching the unperturbed position. At point 2S on the shore far
from the origin the first wave has instead a small crest, followed by a larger trough
(see figure 12b), i.e. the first incoming perturbation is still a positive N-wave. Note
that the maximum runup here is reached by the second incoming wave, which is
followed in turn by a tail of smaller-amplitude waves. The fact that at large distances
from the slide the largest wave is shifted towards the middle of the group is also a
feature of tsunamis propagating along a plane beach. As demonstrated numerically by
Lynett & Liu (2005), experimentally by Di Risio et al. (2009a) and then analytically
by Sammarco & Renzi (2008), this characteristic is due to the excitation of edge-
wave modes trapped along the straight coast. The occurrence of such a phenomenon
around the shoreline of the conical island suggests that edge-wave components of
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Figure 12. Time series in non-dimensional variables for a half-submerged landslide (rs = r0).
Subplot (a) refers to the shoreline point 1S located at (r0, θ = 20.6◦), subplot (b) refers to 2S
at (r0, θ = 60.2◦), subplot (c) to the far-field point 1O at (b, 0◦) and finally subplot (d ) refers
to point 2O at (2b, 0◦). Modes n= 0–9 have been considered. In each of the subplots, a plant
view of the island is sketched on the top left corner. Here, the solid line (–) represents the
island wet contour, while the dashed line (– –) represents the island bottom radius. The arrow
indicates where the slide enters the water and the filled circle specifies the position of the
relevant point.

the water motion can be partially trapped along the coast also in a round geometry.
Let us demonstrate this feature analytically by looking at expression (3.20) for the
runup ζ (r0, θ, t). This is obtained for each of the angular modal components by
integrating with respect to ω ∈ � the form e−iωt , representing a simple harmonic
oscillation in time, multiplied by the forcing factor An(r0, ω), expression (3.21). The
latter physically represents the amplitude of each wave component in the frequency
domain. Figure 13 shows the fast decay of |An(r0, ω)| for increasing ω, so that the
effective domain of integration of (3.20) is restricted only to smaller ω, for each
of the angular modal components. Therefore only the lowest frequencies concur in
determining the magnitude of the free-surface runup at the shoreline. Now, recalling
condition (1.4), the lowest frequencies experience the strongest exponential attenuation
as r increases towards infinity (see also Meyer 1971; Mei et al. 2005): the relevant
wave components are almost trapped around the shoreline, resembling the edge-wave
modes. Hence the free-surface runup, expression (3.20), can be regarded almost as a
sum of edge-wave-like modes, for which the largest wave is always shifted towards
the middle of the group (see Sammarco & Renzi 2008).

Are then any practical differences between the wave fields generated around a
conical island and along a plane beach? A direct comparison of the relevant runup
time series shows them. The bold dashed lines in figure 14(a,b) show the free-surface
runup time series at points y ′ = 0.72 m (y = y ′/σ = 2.05, corresponding to 1S) and
y ′ = 2.175 m (y = y ′/σ = 5.88, corresponding to 2S) along the shoreline of a plane
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Figure 13. Plots of |An(r0, ω)| versus frequency ω for the geometry used in the experiments
of Di Risio et al. (2009b). Modal orders are (a) n= 0, (b) n= 1.
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Figure 14. Free-surface elevation at points: (a) y = 2.05 (corresponding to 1S ) and (b) y =
5.88 (corresponding to 2S ) for the plane beach geometry (bold dashed line) and the conical
island (bold line).

beach, obtained via the analytical model of Sammarco & Renzi (2008). Here the beach
slope s = 1/3 is the same as that of the island flanks. The characteristic parameters
of the slide, σ and λ do not vary too, as anticipated above. In the same figure
14(a,b) the time series at points 1S and 2S of the conical island, already depicted
in figure 12(a,b), are reported again for easiness of comparison, in bold lines. Note
that at both points 1S and 2S the maximum runup (and minimum drawdown) of the
first incoming waves is larger in the plane beach than in the conical island, even if
the characteristic parameters of the slide are the same in both the geometries. This
feature is again consequence of the fact that perfect wave trapping is possible only in
a straight geometry. While on the plane beach energy is all trapped along the coast,
due to the propagation of edge waves along the shoreline, in the circular geometry of
the conical island perfect trapping is not possible. All frequencies, even the smallest
ones, leak some amount of energy to infinity, resulting in attenuation of the maximum
wave height around the coast. This crucial result has been also shown to occur in the
experiments of Di Risio et al. (2009b).

5. Conclusion
An analytical forced two-horizontal-dimension model has been developed to analyse

the distinguishing features of landslide tsunamis propagating around a conical island–
continental shelf system. Two fields of wave motion are defined, the near field, i.e.



Landslide tsunamis propagating around a conical island 273

the inner zone with variable depth, and the far field, i.e. the outer zone with constant
depth. The long wave equation is solved in each of the two fields separately. The
free-surface elevation in the whole domain is then found by matching at the common
boundary the solutions for the two fields. As many other linear-system responses to
transient excitations, the free-surface elevation in each field is given by integrating the
solution of the homogeneous wave equation multiplied by the forcing factor proper to
the field and dependent on the characteristics of the slide. The resulting perturbation
of the free surface is made by transient waves propagating radially and transient
local waves almost trapped. The occurrence of a leading elevation wave travelling
offshore at large times is shown, its amplitude decaying as O(t−1/2), i.e. faster than the
leading Airy wave generated by a transient disturbance in a two-dimensional ocean
of constant depth.

Experimental comparison shows the validity of the model in reproducing the overall
fluid behaviour. The tsunami generation mechanism is analysed for a subaerial slide.
Just after the landslide has entered the water, the first perturbation leaves the origin
as a positive N-wave. The wave profile near the generation zone resembles that of
tsunamis along a plane beach. The free-surface runup at the shoreline induced by
a half-submerged slide has been also investigated. Near the landslide the maximum
runup is reached by the first crest of the incoming wavetrain, while far from the
generation zone the highest wave is always shifted towards the middle of the incoming
group. This is due to the excitation of edge-wave-like components of small frequency,
for which the energy is almost trapped along the shore. However, unlike tsunamis
propagating along an indefinite plane beach, where edge-wave energy is all trapped
along the shoreline, tsunamis around a conical island propagate energy also in the
offshore direction. As a consequence, the waves travelling along the shoreline of a
conical island are characterized by smaller runup than those generated by a similar
landslide along a plane beach with the same slope.

This work was funded by the Italian Ministry of Research (MIUR) under the
research project ‘Development and validation of hydraulic and geologic tools for
supporting a Tsunami Early Warning System. Implementation to the Stromboli
(Eolie) landslide case’ (PRIN-2007). Experimental data provided by Dr M. Di Risio
have been very useful for experimental comparison. Fruitful discussions with Dott.
G. Bellotti are also kindly acknowledged.

Appendix A. The confluent Heun equation
The CHE in its natural general form is (see Slavyanov 1995)

Rrr (r) +

(
2∑

i=1

Ai

r − ri

+ E0

)
Rr (r) +

(
2∑

i=1

Ci

r − ri

+

2∑
i=1

Bi

(r − ri)2
+ D0

)
R(r) = 0.

(A 1)

In the latter equation, R(r) : � → � is the dependent function, Ai , Bi , Ci (i = 1, 2),
D0 and E0 are given coefficients. The CHE has two regular singular points at r = r1

and r = r2, while r = ∞ is an irregular singular point.
Let the coefficients in (A 1) be as follows:

A1 = A2 = 1; B1 = D0 = 0; C1 = λ2, C2 = 0; B2 = −n2; E0 = 0,
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with n ∈ � and λ ∈ �. Also, set the two regular singular points respectively at
r1 = r0 > 0 and r2 = 0, while leaving the remaining irregular singularity at infinity.
Finally, restrict the domain of interest to r > r0. With these positions, (A 1) becomes

Rn,rr +

(
1

r
+

1

r − r0

)
Rn,r +

[
λ2

r − r0

− n2

r2

]
Rn = 0. (A 2)

As seen in § 2, this equation describes the behaviour of the radial part R(r) of the
free-surface elevation ζ (r, θ, t) around a conical island of radius r0, λ representing the
complex wave frequency and n the order of the angular modes.

A.1. Solution

To find the two independent solutions of the CHE (A 2), we shall use the following
change of variables

ξ = 1 − r0

r
, Zn(ξ ; λ) = Rn(r; λ) (A 3)

first suggested by Zhang & Zhu (1994), who already solved (A 2), but only finding
one of the two independent solutions. Note that Zhang & Zhu (1994) called their
result ‘new’, without explicitly referring to the theory of confluent Heun functions
originally developed by Heun (1899) and then tuned by Slavyanov (1995). Here we
pursue a slightly different deduction of the solution, which eventually will enable us
to investigate the asymptotic behaviour of the confluent Heun functions for large
parameter λ. By using (A 3) the regular singular point at r = r0 is mapped to ξ =0,
while the irregular singularity at infinity is mapped to ξ = 1 and (A 2) becomes

Zn,ξξ +
p(ξ )

ξ
Zn,ξ +

q(ξ )

ξ 2
Zn = 0, (A 4)

where

p(ξ ) = 1, q(ξ ) =
λ2r0ξ − n2ξ 2 (1 − ξ )

(1 − ξ )3
. (A 5)

We shall now employ the Frobenius’ method of power series to find the two
independent solutions of (A 4) about the regular singular point ξ =0. Let us assume

Z(ξ ; λ) = ξρ

∞∑
m=0

anm(ρ; λ)ξm, (A 6)

with ρ and anm being respectively the index and the coefficients of the Frobenius
expansion (A 6), still unknown. Also, since both the polynomials p(ξ ) and q(ξ ) are
analytic at ξ = 0, they can be expanded in Taylor series about the origin:{

p(ξ )

q(ξ )

}
=

∞∑
k=0

{
pk

qk

}
ξk,

{
pk

qk

}
=

{
0

−n2(k − 1) + λ2r0
2

(
k + k2

)
}

, (A 7)

k � 1, with p0 = 1 and q0 = 0. Substitution of both the series expansions (A 6) and
(A 7) into (A 4) gives

∞∑
m=0

(m + ρ)(m + ρ − 1)anmξ (m+ρ−2) +

∞∑
m,k=0

pk ξk(m + ρ)anmξ (m+ρ−2)

+

∞∑
m,k=0

qk ξ kanmξ (k+ρ−2) = 0, (A 8)
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where ρ and the anm are unknown. Equation (A 8) is a polynomial expression which
involves powers of ξ . For (A 8) to be satisfied ∀ ξ ∈ (0, 1), we must require that the
coefficients of each power of ξ are zero. Starting from the lowest power ξρ−2 (obtained
with m = k = 0) we have

an0

[
ρ2 + (p0 − 1) ρ + q0

]
= 0, (A 9)

which is the indicial equation. Setting the arbitrary parameter an0 = 1, the roots ρ1, ρ2

of the indicial equation (A 9) give the two indexes of the series expansion (A 6). With
p0 = 1 and q0 = 0, (A 9) simply becomes ρ2 = 0. Hence ρ1 = ρ2 = 0 are two coinciding
indexes. According to Frobenius’ theory, in this case only one independent solution of
(A 4) has the sought form (A 6). The other solution has instead logarithmic terms and
can be obtained only via further investigation (see Bender & Orszag 1978). Back to
the first independent solution (A 6), the unknown terms anm(ρ; λ) are to be found by
setting to zero the remaining coefficients of the polynomial expression (A 8). Hence
we get

anm(ρ; λ) =
1

(m + ρ)2

m∑
k=1

an,m−k(ρ)

[
n2(k − 1) − λ2r0

2

(
k + k2

)]
, m = 1, 2, . . . (A 10)

Then by substituting ρ = 0 in the latter relations we get the sought expression for the
coefficients anm(λ) = anm(ρ = 0; λ) of the series expansion (A 6):

anm(λ) =
1

m2

m∑
k=1

an,m−k

[
n2(k − 1) − λ2r0

2

(
k + k2

)]
, m = 1, 2, . . . . (A 11)

so that the first independent solution of the transformed equation (A 4) is

Zn(ξ ; λ) =

∞∑
m=0

anm(λ) ξm, (A 12)

with the anm given by (A 11). The Confluent Heun function of first kind and order n

in terms of r (recall A 3) is

Hc(1)
n (r/r0; λ) ≡ Zn(ξ ; λ) =

∞∑
m=0

anm(λ)
(
1 − r0

r

)m

, (A 13)

and it represents the first independent solution of the governing equation (A 2). As
done in § 1, the parametric dependence on the radius r0 is further omitted for the
sake of brevity. The series solution (A 13) has been checked numerically against the
result of Zhang & Zhu (1994) showing perfect agreement. The second independent
solution can now be found by differentiating the Frobenius series (A 6) with respect
to the index ρ. In so doing, define the shorthand notation

L· = (·)ξξ +
p(ξ )

ξ
(·)ξ +

q(ξ )

ξ 2
(·),

such that (A 4) can be rewritten as LZ(ξ ; λ) = 0. The general Frobenius expansion
(A 6) satisfies

LZ(ξ ; λ) = an0 ξρ−2 ρ2. (A 14)

Indeed, by setting ρ = 0, the right hand of the latter expression vanishes and the
polynomial expression (A 8) is obtained again, leading back to the first independent
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solution. However, differentiating (A 14) with respect to the index ρ and then
substituting ρ =0 yield

L

[
∂Z

∂ρ

∣∣∣∣
ρ=0

]
= 0, (A 15)

where Z is given by (A 6). Therefore

∂Z

∂ρ

∣∣∣∣
ρ=0

= ln(ξ )

∞∑
m=0

anm(λ)ξm +

∞∑
m=0

bnm(λ)ξm

is also an independent solution of (A 4). The series coefficients

bnm(λ) =
∂anm(ρ; λ)

∂ρ

∣∣∣∣
ρ=0

must satisfy the following relationship in order to be a solution of (A 15):

bnm(λ) =
1

m2

m∑
k=1

bm−k

[
n2(k − 1) − λ2r0

2

(
k + k2

)]
− 2

m
anm(λ), m = 1, 2, . . . (A 16)

with bn0 = 0 and the anm given by (A 11). Back to the original variable r via the
transforms (A 3), the second independent solution to (A 2) is then the Confluent
Heun function of second kind and order n

Hc(2)
n (r; λ) = ln

(
1 − r0

r

) ∞∑
m=0

anm(λ)
(
1 − r0

r

)m

+

∞∑
m=0

bnm(λ)
(
1 − r0

r

)m

. (A 17)

Finally, the general solution of (A 2) is the linear combination of the two independent
ones, respectively (A 13) and (A 17):

Rn(r; λ) = αn Hc(1)
n (r; λ) + βn Hc(2)

n (r; λ).

A.2. Wronskian

Let us rewrite the CHE (A 2) in the Sturm–Liouville form

d

dr

(
hrRn,r

)
+

[
(iω)2r − n2h

r

]
Rn = 0, (A 18)

where h = r − r0, ω = iλ. The two linearly independent solutions of (A 18),
R(1)

n = Hc(1)
n (r; iω) and R(2)

n = Hc(2)
n (r; iω) satisfy then

d

dr

(
hrR(1)

n,r

)
+

[
(iω)2r − n2h

r

]
R(1)

n = 0

and
d

dr

(
hrR(2)

n,r

)
+

[
(iω)2r − n2h

r

]
R(2)

n = 0

respectively. Now multiplying the first of the latter equations by R(2)
n , the second one

by R(1)
n and then subtracting the two results, we get

d

dr

(
hrR(1)

n,rR
(2) − hrR(2)

n,rR
(1)
n

)
= 0.

Integration of this differential equation with respect to r provides

R(1)
n R(2)

n,r − R(1)
n,rR

(2)
n = − A

r(r − r0)
, (A 19)
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where the left-side term is indeed the Wronskian W [R(1)
n , R(2)

n ] of the two independent
solutions. The integration constant A can be found by directly evaluating the
Wronskian W as r tends to r0. For r → r0 the behaviour of the two functions
R(1)

n =Hc(1)
n (r; iω) and R(2)

n = Hc(2)
n (r; iω) is defined by truncating the series solutions

(A 13) and (A 17) respectively to terms of order O(1 − r0/r). This yields

R(1)
n = Hc(1)

n (r; iω) � 1 + ω2r0

(
1 − r0

r

)
for the first solution and

R(2)
n = Hc(2)

n (r; iω) � ln
(
1 − r0

r

) [
1 + ω2r0

(
1 − r0

r

)]
− 2ω2r0

(
1 − r0

r

)
for the second solution. Derivatives R(1)

n,r and R(2)
n,r for r → r0 can be evaluated by

differentiating the above expressions with respect to r . Then (A 19) becomes

W =
r0

r(r − r0)
+ ω4 r3

0

r3
(r − r0) = − A

r0 (r − r0)
,

which in the limit for r → r0 yields A= −r0, i.e.

W
[
Hc(1)

n (r; iω), Hc(2)
n (r; iω)

]
= W (r) =

r0

r(r − r0)
. (A 20)

A.3. Asymptotic behaviour for large parameter λ= iω

Consider the CHE (A 2), whose independent solutions are the two confluent Heun
functions Hc(1)

n (r; λ) and Hc(2)
n (r; λ) of first and second kind respectively. Now let the

parameter λ= iω, with ω ∈ �. Then, the anm(λ= iω) are

an,0 = 1, an,1 = ω2r0, an,2 =
1

4
ω4r2

0 +
3

4
ω2r0 +

1

4
n2

an,3 =
1

36
ω6r3

0 +
5

12
ω4r2

0 +

(
5

36
n2 +

2

3

)
ω2r0 +

2

9
n2.

For very large ω we retain only the higher order terms in the preceding expansions,
thus getting the following approximated behaviour for the anm:

anm �
(
ω

√
r0

)2m

(m!)2
, m = 1, 2, . . . . (A 21)

Therefore, to the crudest approximation,

Hc(1)
n (r; iω) �

∞∑
m=0

(x/2)2m

(m!)2
= I0(x)

where x = 2ω
√

r0(1 − r0/r) and I0(x) is the modified Bessel function of first kind and
order zero. Hence, for large ω

Hc(1)
n (r; iω) � I0

[
2ω

√
r0

(
1 − r0

r

)]
. (A 22)

The second independent solution of the CHE Hc(2)
n has coefficients bnm given by

(A 16), which letting λ= iω and ω → ∞ can be approximated by

bn,0 = 0, bn,m � −2

(
1 +

1

2
+

1

3
+ · · · +

1

m

)
1

(m!)2
(
ω

√
r0

)2m
, m = 1, 2, . . . .

(A 23)
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Therefore to the crudest approximation for ω → ∞, recalling (A 17) and (A 22), we
obtain

Hc(2)
n (r; iω) � 2

{
ln

(
x

2ω
√

r0

)
I0(x) −

[
x2

4
+

(
1 +

1

2

)
1

(2!)2

(
x2

4

)2

+

(
1 +

1

2
+

1

3

) (
x2/4

)3
(3!)2

+ · · ·
]}

, (A 24)

with x =2ω
√

r0(1 − r0/r). Now, the terms inside the square brackets of the latter
equation can be further expressed as

x2

4
+

(
1 +

1

2

)
1

(2!)2

(
x2

4

)2

+ · · · = K0(x) +
[
ln
(x

2

)
+ γ

]
I0(x),

with γ =0.577 . . . and K0 the modified Bessel function of second kind and order zero
(see Abramowitz & Stegun 1972). Hence expression (A 24) can be simplified as

Hc(2)
n (r; iω) � 2

{
I0

[
2ω

√
r0

(
1 − r0

r

)] [
ln

(
1

ω
√

r0

)
− γ

]

− K0

[
2ω

√
r0

(
1 − r0

r

)]}
, (A 25)

for large ω ∈ �. Moreover, in the complex half-plane | arg(ω)| < π/2, K0 → 0 for
large ω. The asymptotic expansion (A 25) can be further approximated to the leading
behaviour

Hc(2)
n (r; iω) � −2I0

[
2ω

√
r0

(
1 − r0

r

)]
ln
(
ω

√
r0

)
, (A 26)

for large ω, with | arg(ω)| < π/2.

A.4. Behaviour for small parameter λ

The behaviour of the confluent Heun functions for small λ can be obtained by keeping
only the first term in the relevant series expansions, with the argument r/r0 regarded
as a parameter. Hence the confluent Heun function of the first kind (A 13) becomes

Hc(1)
n (r; λ) � Hc(1)

n (r; 0) + O(λ2), (A 27)

while

Hc(2)
n (r; λ) � Hc(2)

n (r; 0) + O(λ2), (A 28)

is the approximation of the confluent Heun function of second kind (A 17). Asymptotic
expansions of derivatives for small λ are defined accordingly, giving respectively

Hc(1)
n,r (r; λ) � Hc(1)

n,r (r; 0) + O(λ2)

and

Hc(2)
n,r (r; λ) � Hc(2)

n,r (r; 0) + O(λ2).

Appendix B. Complex integrals evaluation
B.1. Evaluation of the inner integral of (3.1)

Consider the integral in the far field∫ c+i∞

c−i∞
fn(ω)eωtdω, (B 1)
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Im (ω)

Γ

Branch cut

Re (ω)
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c

Figure 15. Integration contour Γ for t < 0 and the semicircular contour CR .

where

fn(ω) =
Fn(ρ; ω)Hc(1)

n (ρ; iω)Kn(ωr/
√

hb)

�
(1)
n (ω)

. (B 2)

Here ρ ∈ (r0, b) and r ∈ (b, ∞) are regarded as parameters, the forcing function Fn

is given by (2.17) and the denominator �(1)
n by (2.27). c is a positive real constant. A

branch cut on the negative real axis is introduced to avoid multi-valuedness of Kn

(see Abramowitz & Stegun 1972).
For t < 0, take a large semicircular contour CR on the half-plane

Ω = {ω ∈ � : | arg(ω)| < π/2, ω �= 0} ,

to form the closed circuit Γ , as depicted in figure 15 . Hence∫ c+i∞

c−i∞
fn(ω)eωtdω =

∮
Γ

fne
ωtdω −

∫
CR

fne
ωtdω. (B 3)

Note that in the complex domain Ω each of the functions at the numerator of
fn, expression (B 2), are entire functions of ω (Kn has a pole at ω = 0 �∈ Ω). The
denominator �(1)

n (2.27) of the integrand fn has no zeros in the same complex domain,
as shown in figure 16(a,b). Since no poles are found for fn,

∮
Γ

fne
ωt = 0, as a result

of Cauchy’s theorem. On the large semicircular contour CR the function Fn (2.17) at
the numerator of the integrand fn (3.2) can be expanded for large ω as

Fn(ρ; ω) � −2�n (r − rs) ,

i.e. a constant, having used the approximation erf(−x) � −1 + e−x2

/
√

πx for large x.
Also, recall the asymptotic expression (A 22),

Hc(1)
n (r; iω) � I0

(
2ω
√

r0(1 − r0/r)
)

,

as shown in Appendix A.3. Finally, the modified Bessel functions of first and second
kind can be approximated to the leading order by

In(x) � e x

√
2πx

, if | arg(x)| <
π

2

and

Kn(x) � e−x√
2

π
x

, if | arg(x)| <
3

2
π
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Figure 16. Contour plots of the curves Re{�(1)
n (ω)} =0 (solid line) and Im{�(1)

n (ω)} =0 (bold
line) in the complex ω = ωR +iωI plane, for modal order n= 0 (a) and n= 1 (b). Parameters are

r0 = 11.82, b = 25.43. Complex zeros of �
(1)
n , expression (2.27), occur at the points of intersection

of the two curves Re{�(1)
n } = 0 and Im{�(1)

n } = 0. Note that no point of intersection is found
in the domain considered.

respectively (see Abramowitz & Stegun 1972). By substituting the asymptotic
expansions of Fn, Hc(1)

n , In and Kn for large ω into the integrand function fn(ω)
(B 2), we get the leading behaviour of fn for large ω:

fn(ω) � e−(αω+β)

ω
, (B 4)

where

α = 2
√

r0

(√
1 − r0

b
−
√

1 − r0

ρ

)
(B 5)

and

β = h
−1/2
b (r − b) (B 6)

are constant for fixed ρ and r . Since ρ ∈ (r0, b) and r ∈ (b, ∞), both the terms α

(B 5) and β (B 6) are positive. Now let us substitute ω = Reiϑ , |ϑ | < π/2 inside (B 4);
since Re{ω} =R cos ϑ > 0, the asymptotic expansion (B 4) on the large semicircular
contour CR is a negative exponential of R. As a result |fn| → 0 in the limit R → ∞.
The application of the Jordan’s lemma gives then

∫
CR

fne
ωtdω = 0, so that∫ c+i∞

c−i∞
fn(ω)eωtdω = 0,

for t < 0.
For t > 0, consider the new integration path Γ ⊆ Ω shown in figure 17. As above,

we may write ∫ c+i∞

c−i∞
fn(ω)eωtdω =

(∮
Γ

−
∫

Γ +

−
∫

Γ −
−
∫

Γε

)
fn(ω)eωtdω, (B 7)

where the straight lines Γ + and Γ − are parallel to the real axis at Im{ω} = ± ∞
respectively, and the line Γε lies just on the right of the imaginary axis, with ε � 1
(see figure 17); fn(ω) is still given by (B 2). As seen above, the integrand fn has no
poles for ω ∈ Ω . Hence application of the Cauchy theorem to the first integral gives
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Im (ω)
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Branch cut

Re (ω)

cε

Figure 17. Integration contour Γ for t > 0.

∮
Γ

fn(ω)eωtdω = 0. Now, as ε approaches zero, the second integral on the straight line
Γ + can be written as∫

Γ +

fn(ω)eωtdω = lim
δ→∞

∫ ε

c

fn(s + iδ)e(s+iδ)tds = lim
δ→∞

e−β+iδ(t−α)

∫ ε

c

es(t−α)

s + iδ
ds = 0, (B 8)

having used the asymptotic formula (B 4) for fn. Analogous considerations can be
made on the third integral in (B 7), yielding

∫
Γ − fn(ω)eωt = 0. Expression (B 7) becomes∫ c+i∞

c−i∞
fn(ω)eωtdω =

∫ ε+i∞

ε−i∞
fn(ω)eωtdω.

Consider the transform

ω = eiπ/2s, (B 9)

which is a rotation of −90o about the origin. The latter integral equation becomes
then ∫ c+i∞

c−i∞
fn(ω)eωtdω = i

∫ +∞−iε

−∞−iε

fn(is)e
istds

.
= i Ln(s). (B 10)

In the limit ε → 0, the new integration path becomes slightly deformed due to the
presence of the pole for Kn (see B 2) at ω = 0. The branch cut is now placed on the
positive imaginary axis after having applied the transform (B 9) (see figure 18). Hence
we obtain

Ln(s) =

∫ +∞−iε

−∞−iε

fn(is)e
istds =

(∫ 0

−∞
+

∫ ∞

0

+

∫
Cδ

)
fn(is) eistds, (B 11)

Cδ being a small semicircle of radius δ � 1 surrounding the origin of the complex
plane, as depicted in figure 18. To evaluate the integral on the semicricle Cδ , consider

fn(is) =
Fn(ρ; is)Hc(1)

n (ρ; s)Kn(isr/
√

hb)

�
(1)
n (is)

, (B 12)

as s → 0. The forcing term Fn (2.17) at the numerator of (B 12) can be approximated
as Fn(ρ; is) � −2(ρ − rs)e

−(ρ−rs )
2

for small s, ρ being still regarded as a parameter; the



282 E. Renzi and P. Sammarco

Im (s)

Branch cut

Re (s)Cδ

Figure 18. Integration path (bold line) for (B 10). Note that the presence of the pole for Kn

at ω = 0 induces a deformation of the path, generating the small semicircle Cδ .

asymptotic expansion of the modified Bessel functions of second kind is instead{
K0(x)

Kn(x)

}
�

⎧⎨
⎩

− ln(x)

1

2
(n − 1)!

(x

2

)−n

⎫⎬
⎭

for small argument x ∈ � and n= 1, 2, . . . (see Abramowitz & Stegun 1972). Finally,
the confluent Heun function of first kind can be expanded for small parameter
s as shown in Appendix A.4 , yielding Hc(1)

n (r; s) � Hc(1)
n (r; 0) + O(s2), where the

first expansion term is a finite value depending on the parameter r/r0 ∈ (1, ∞). The
derivative of the confluent Heun function of the first kind Hc(1)

n,r is defined accordingly

Hc(1)
n,r (r; s) � Hc(1)

n,r (r; 0) + O(s2). Substituting the approximated forms for the forcing

function Fn, the modified Bessel function Kn and the confluent Heun function Hc(1)
n

into both the numerator and the denominator �(1)
n (is) of (B 12) yields

f0(is) � 2b (ρ − rs) e−(ρ−rs )
2

ln

(
isr√
hb

)
(B 13)

for n= 0 and

fn(is) �
Hc(1)

n (ρ; 0)

(
b

r

)n [
−2 (ρ − rs) e−(ρ−rs )

2
]

n
b
Hc(1)

n (b; 0) + Hc(1)
n,r (b; 0)

= O(1) (B 14)

for n= 1, 2, . . ., s � 1. Note that in (B 13) and (B 14) r and ρ are to be regarded
as parameters. With the approximated forms (B 13) and (B 14) the integral on the
semicircle Cδ (third of B 11) becomes∫

Cδ

f0(is)e
istds � 2b (ρ − rs) e−(ρ−rs )

2

∫
Cδ

ln

(
isr√
hb

)
ds (B 15)

for n= 0 and ∫
Cδ

fn(is)e
istds �

∫
Cδ

O(1)ds (B 16)

for n= 1, 2, . . . respectively. Making use of the parametric transform s = δeiφ , φ ∈
(−π, 0), and letting δ → 0 yield∫

Cδ

f0(is)e
istds ∝ δ

∫ 0

−π

ln
(
i δeiφ

)
eiφdφ → 0
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for (B 15) and ∫
Cδ

fn(is)e
istds ∝ δ

∫ 0

−π

O(1)eiφdφ → 0

for (B 16). Hence the integral form (B 11) simplifies into

Ln(s) =

∫ ∞

−∞
fn(is)e

istds,

and the Laplace integral (B 10) becomes∫ c+i∞

c−i∞
fn(ω)eωtdω = i Ln(s) = i

∫ ∞

−∞
fn(is)e

istds.

B.2. Evaluation of the integral (3.14)

Consider the complex integral∫ c+i∞

c−i∞
fjn(ρ, ω)dω, j = 1, 2,

where

f1n(ρ, ω) = Fn(ρ; ω)

[
Hc(1)

n (ρ; iω)
�(2)

n (ω)

�
(1)
n (ω)

− Hc(2)
n (ρ; iω)

]
Hc(1)

n (r; iω)

and

f2n(ρ, ω) = Fn(ρ; ω)
[
Hc(1)

n (ρ; iω)Hc(2)
n (r; iω) − Hc(2)

n (ρ; iω)Hc(1)
n (r; iω)

]
.

In the latter expressions, Fn is the forcing function (2.17), while �(1,2)
n are given by

(2.27); ρ and r are fixed parameters.
For t < 0, take the large semicircular contour CR depicted in figure 15. Hence∫ c+i∞

c−i∞
fjn(ρ, ω)dω =

∮
Γ

fjne
ωtdω −

∫
CR

fjne
ωtdω,

where Γ is the closed circuit represented in figure 15. Since both fjn , j =1, 2 are entire
functions of ω ∈ Ω , again

∮
Γ

fjne
ωtdω = 0 by application of the Cauchy theorem.

Furthermore, repeating the same algebra of the previous section, it is straightforward
to show that |fjn(ρ, ω)| → 0 as |ω| → ∞. As a consequence of the Jordan lemma,∫

CR
fjn(ρ, ω)eωt = 0 and ∫ c+i∞

c−i∞
fjn(ω)eωtdω = 0, j = 1, 2

for t < 0.
For t > 0, consider again the closed circuit shown in figure 17. As seen before∫ c+i∞

c−i∞
fjne

ωtdω =

(∮
Γ

−
∫

Γ +

−
∫

Γ −
−
∫

Γε

)
fjn(ω)eωtdω, (B 17)

where Γ + and Γ − are two straight lines parallel to the real axis at �{ω} = ± ∞
respectively, and the line Γε lies just on the right of the imaginary axis, with ε � 1
(see figure 17). Again, since the fjn are entire functions of ω ∈ Ω , application of the
Jordan lemma gives ∮

Γ

fjn eωtdω = 0.
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Using the same argument of § 3.1, it is immediate to show that∫
Γ (+,−)

fjn eωtdω = lim
δ→∞

∫ (ε,c)

(c,ε)

fjn(s(+, −)iδ) e(s(+,−)iδ)tds = 0.

Therefore we are only left with∫ c+i∞

c−i∞
fjn eωtdω =

∫ ε+i∞

ε−i∞
fjn eωtdω,

ε � 1. With the change of variable s =eiπ/2ω, the latter integral equation becomes∫ c+i∞

c−i∞
fjn eωtdω = i

∫ ∞−iε

−∞−iε

fjn(is) eistds
.
= iLjn(s), (B 18)

where the new integration path is slightly below the real s-axis. Letting ε → 0, the
integrals Ljn(s) are evaluated again on the deformed contour shown in figure 18, thus
yielding

Ljn(s) =

(∫ ∞

−∞
+

∫
Cδ

)
fjne

stds,

where Cδ is the semicircular path of radius δ � 1 (see again figure 18). Consider the
two integrand functions

f1n(ρ, is) = Fn(ρ; is)

[
Hc(1)

n (ρ; s)
�(2)

n (is)

�
(1)
n (is)

− Hc(2)
n (ρ; s)

]
Hc(1)

n (r; s)

and

f2n(ρ, is) = Fn(ρ, is)
[
Hc(1)

n (ρ; is) Hc(2)
n (r; s)

− Hc(2)
n (ρ; s) Hc(1)

n (r; s)
]
.

With the limiting forms for Fn, Kn, Hc(1)
n and Hc(2)

n already used in the previous
subsection, it is immediate to show that |fjn(is)| =O(1), j = 1, 2, . . . , as s tends to
zero. Once again

∫
Cδ

fjne
istds = 0 on the small semicircle Cδ . Hence (B 18) can be

rewritten as ∫ c+i∞

c−i∞
fjn eωtdω = iLjn(ρ) = i

∫ ∞

−∞
fjn(ρ, is)eistds, (B 19)

with fjn ,j = 1, 2, given by (3.12) and (3.13) respectively.
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